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Vortex excitation of rectangular cylinders with a 
long side normal to the flow 
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The vortex excitation of rectangular cylinders having side ratios of 0.2,0.4 and 0.6, 
with a long side normal to the flow, in a mode of lateral translation, is investigated 
experimentally in a wind tunnel using free- and forced-oscillation methods. The range 
of reduced wind speeds investigated, 3-12, includes the vortex-resonance regime. The 
forced-oscillation experiment includes measurements of the fluctuating lift force at 
amplitudes up to 10% of the length of a long side. The experiments were also 
performed on cylinders with a long fixed splitter plate. The results of the measure- 
ments show that vortex excitation of a rectangular cylinder is strongly dependent 
on the side ratio. It is suggested that the critical change of the mean base pressure 
of an oscillating rectangular cylinder with increasing side ratio is closely correlated 
with the vortex-excitation characteristics. The concept of vortex excitation as 
aeroelastic flutter occurring in a fluid-body coupled system is proposed on the basis 
of the experimental results. The most essential feature of vortex excitation as a 
coupled flutter is that the fluid subsystem can be set into resonance by the body 
motion. A rapid phase-angle change in the lift force through vortex resonance 
produces a large out-of-phase force component which excites the motion of the body 
subsystem. 

1. Introduction 
Vortex excitation of a bluff body has received considerable attention from both 

practical and academic points of view. It can occur in a narrow range of wind speed 
centred on that at which the frequency of vortex shedding coincides with that of the 
body displacement (hereinafter referred to as the vortex-resonant speed). Many 
engineering structures such as tall stacks and long bridges are susceptible to vortex 
excitation. It often causes fatigue in structural members and sometimes leads to the 
failure of a complete structure. It is an important and very complicated fluid-solid 
interaction phenomenon, and many basic questions relating to the interplay between 
the body movement and the formation and shedding of vortices remain unsolved. 
A number of papers have been written on this subject, and recent reviews may be 
found in Sarpkaya (1979) and Bearman (1984). 

Rectangular cylinders have been good test bodies for investigating separated-flow 
flutter. In  addition to their simple geometry, they are susceptible to a variety of 
separated-flow flutter including galloping, torsional flutter and vortex excitation 
both in bending and in torsion. While much work has been done on vortex excitation 
of a rectangular cylinder, comparatively few measurements have been presented of 
the fluctuating pressures and forces experienced by an oscillating rectangular 
cylinder. These include Wilkinson (1974), Otsuki et al. (1974), Nakamura & Mizota 
(1975), Washizu et al. (1978), Nakamura (1979) and Bearman & Obasaju (1982). 
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Otsuki et al. (1974), Nakamura & Mizota (1975) and Washizu et al. (1978) measured 
the fluctuating lift force on oscillating rectangular cylinders with d/h = 1.0, 2.0 and 
4.0, where d and h are the section dimensions respectively parallel and normal to the 
flow, in addition to the free-oscillation experiment, to investigate vortex excitation 
and galloping. It was shown that while vortex excitation of a rectangular cylinder 
was strongly dependent on the side ratio over the range they examined, the phase 
angle of the lift force relative to the body motion always underwent a rapid change 
in passing the vortex-resonance regime. 

Wilkinson (1974) and Bearman & Obasaju (1982) measured the fluctuating 
pressures of an oscillating square cylinder. Bearman & Obasaju noted substantial 
differences in vortex excitation between a circular cylinder and a square cylinder. 
The square cylinder showed a much smaller amplification of the fluctuating lift force 
in the lock-in range, and vortex excitation was limited to a narrow range at the upper 
end of lock-in. 

The present paper is concerned with vortex excitation of rectangular cylinders with 
d/h = 0.2, 0.4 and 0.6. The results of measurement of the mean base pressure, the 
fluctuating lift force and the velocity fluctuation in the near wake on forced-oscillating 
rectangular cylinders are presented along with those of the rate of growth of 
oscillation on freely oscillating rectangular cylinders. Attention is focused on the 
important role of the afterbody shape in vortex excitation of a bluff body. The 
mechanism of onset of vortex excitation is discussed in detail on the basis of the 
experimental results and the concept of vortex excitation as coupled flutter is 
proposed. Some remarks on the concept of lock-in are also included. 

2. Experimental arrangements and procedures 
2.1. Wind tunnel and models 

The experiments were performed in a low-speed wind tunnel with a rectangular 
working section 3 m high, 0.7 m wide and 2 m long. The section dimensions of the 
three rectangular-cylinder models used were h = 15 cm and d = 3, 6 and 9 cm. As 
is shown in figure 1, the model had circular end plates 45 cm ( = 3h) in diameter with 
a separation of 65 cm (= 4.3h), and it was mounted horizontally in the working 
section to allow either free- or forced-oscillation experiments. It was constructed with 
light plastic plates and a metal backbone tube. Its weight was small, about 0.45 kg, 
particularly important for the forced-oscillation experiment. 

2.2. Free-oscillation experiment 
In the free-oscillation experiment the model was supported by flexural and coil 
springs to move in a direction normal to the flow. The displacement of the model was 
sensed by strain gauges cemented on the flexural springs, and a hot-wire anemometer 
was used to detect regular vortex shedding behind the model when held stationary. 
Measurements of the frequency and the logarithmic rate of growth or decay of 
oscillation at an amplitude of O.lh were made on models in still air and in wind from 
the displacement signals displayed on a pen-recorder. No measurements were 
attempted of the steady-state amplitude, which could have been much larger than 
O.lh, because attention here was focused on the small-amplitude behaviour of vortex 
excitation. The frequency of oscillation in still air and the system damping 
(logarithmic decrement, corrected for the still-air aerodynamic damping as will be 
described below) were respectively equal to about ftl = 5.6 Hz and 8, = 0.0015. The 
value of the mass ratio p = m/ph2, where m is the gross mass of the model per unit 
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FIGURE 1. Rectangular-cylinder model and hot wire. 

span and p is the air density, was about 70. The value of the Scruton number which 
is defined by Sc = 2 p 4  was about 0.2. The wind speed was varied over a range of 
about 3-10 m s-l. Correspondingly, the reduced wind speed, defined by77 = U / (  fy h) ,  
where U is the wind speed, ranged approximately from 3.5 to 12.0, which included 
the vortex-resonant speed Ucr. The range of the Reynolds number, which is baaed 
on h, was about (3-10) x lo4. An experiment was added using models with a long 
splitter plate placed downstream and fixed relative to the tunnel walls. The splitter 
plate was 6.2h in length and the gap between the model and the plate was about 
0.03h. 

2.3. Forced-oscillation experiment 
In  the forced-oscillation experiment the model was subjected to simple harmonic 
lateral oscillation at a constant frequency of 6.0 Hz with an amplitude of 0.05 or O.1h 
using a mechanical vibrator (Nakamura & Mizota 1975). Measurements of the mean 
base pressure, the fluctuating lift force and the u-component velocity fluctuation in 
the wake at a position 2h downstream of the leading edge of the model and 1.3h off 
the centreline were made. The range of the wind speed was the same as that for the 
free-oscillation experiment. 

The method for measuring the lift force is as follows. Two identical models, one 
in a uniform stream and one in still air, are oscillated simultaneously, and the side 
forces F(t )  and F, ( t )  acting respectively on the active and the dummy models are 
measured using strain gauges cemented on the backbone tubes of the models. The 
lift force on the active model is then obtained by subtracting Fl(t) from F(t) .  This 
method conveniently removes the force due to the inertia of the model but, as 
Bearman & Obasaju (1982) commented, Pl(t) also includes a contribution due to the 
aerodynamic force acting on the dummy model oscillating in still air. 

The aerodynamic force per unit span on a rectangular cylinder oscillating in still 
air with y ( t )  = yo sin 2njy t ,  where yo is the amplitude of oscillation, is expressed by 

(1) 
The inertia and damping coefficients K and K' are functions of two non-dimensional 
parameters fy d 2 / v  and yo/h,  where v is the kinematic viscosity of air. The aerodynamic 

F2(t) = n a p d B f $ y 0 ( K  sin2nfyt--K' cos2nfVt). 
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dlh  fr/ d 2 / v  K K' 

0.2 356 3.15 1 .oo 
0.4 1425 2.20 0.28 
0.6 3208 2.00 0.17 

TABLE 1 

force F,(t)  in still air is too small to measure but in still water it is very much larger 
because of the large water density and can be measured with good accuracy. 
Therefore, we performed a free-oscillation experiment in still water to determine the 
values of K and K' corresponding to the wind-tunnel experiment. These are shown in 
table 1. All the results for the lift force presented here have been corrected for the 
aerodynamic force F!(t) using the values of K and K' shown in table 1. 

2.4. The frequency-response component of the lift force on forced-oscillating cylinders 
Generally, the lift force acting on an oscillating bluff body has two main frequency 
components: one, which has a frequency equal to that of the imposed oscillation fy, 

is hereinafter referred to as the frequency-response component ; and the other, which 
has a frequency equal to that of natural vortex sheddingf, (natural vortex-shedding 
frequency refers to the frequency that would be measured behind a fixed body under 
similar flow conditions), is referred to as the Strouhal component. 

The frequency-response component of the lift force per unit span is defined in a 
non-dimensional form its 

= CLm, ~in(2xfyt+#Lm), (2) 

where CLmo is the amplitude and #tm is the phase angle relative to the body 
displacement. A real-time FFT analyser was used to obtain the frequency-response 
component of the lift force and that of the u-component velocity fluctuation similarly 
defined. 

The condition for the onset of flutter instability is that the out-of-phase component 
of the lift force is positive, that is, 

(3) 0 < #Lm < 180'. 

Because our main concern is the onset of flutter instability, particular attention is 
paid in this paper to the behaviour of the frequency-response component of the lift 
force. It should be remarked that inequality (3) is valid regardless of whether the lift 
force in vortex excitation is locked in (see the discussions on vortex excitation in 94). 

2.5. Combined blockage and end effects 
In an experiment using a sectional model with end plates, combined blockage and 
end effects should be considered (Nakamura & Nakashima 1986). Generally, the two 
effects have opposite signs : namely, the former decreases the base pressure of a bluff 
body whereas the latter increases it. In the present experiment the blockage ratio 
was its large as 5.0 % and the size of the end plates used was relatively small. However, 
none of the results presented have been corrected for these two effects since there 
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FIGURE 2. Spanwiae distributions of the mean base-pressure coefficient of fixed rectangular 
cylinders. 0, d / h  = 0.2; A, 0.4; 0 , 0 . 6 ;  ----, corrected value (Nakamura & Ohya 1984). 

is no method of correction available for fluctuating force measurements made with 
an oscillating bluff body. 

3. Experimental results 
3.1. Mean base pressure of forced-oscillating cylinders 

Figure 2 shows the spanwise distributions of the mean base-pressure coefficient of 
fixed rectangular cylinders with three different values of the side ratio. It also includes 
the corresponding corrected values of Nakamura & Ohya (1984) for a comparison. 
It is seen that the base pressure of cylinders with d/h = 0.2 and 0.4 is reasonably 
uniform along the span while it is non-uniform for the cylinder with d/h = 0.6, which 
is close to the critical section with d/h = 0.67 at which the base pressure shows a, sharp 
minimum (Nakaguchi, Hashimoto & Muto 1968; Bearman & Trueman 1972). 

Figure 3(a-c) shows the variations of the mean base-pressure coefficients of 
rectangular cylinders oscillating at amplitudes of 0.05h and O.lh with the reduced 
wind speed. It is interesting that the mean base pressure is decreased considerably 
near the vortex-resonant speed Ucr for cylinders with d/h = 0.2 and 0.4 while little 
departure from the steady-state value is seen for the cylinder with d/h = 0.6. The 
mean base pressure at reduced wind speeds much lower than ucr is also smaller than 
the steady-state value for the former two, while it is larger for the cylinder with 
d/h = 0.6. 
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FIGURE 3. For caption see facing page. 
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FIQURE 4. Traces of the cylinder-displacement signal in the free-oscillation experiment. 
(a) d / h  = 0.4, = 4.17; (b )  0.4, 5.36; (c) 0.4, 6.30; (d) 0.4, 11.9; (e) 0.2, 6.14. 

3.2. The rate of growth of oscillation of freely oscillating cylinders 
Figure 4 shows samples of the displacement signal during the growth of oscillation 
of cylinders with d l h  = 0.2 and 0.4 at various wind speeds. The dominant frequency 
of oscillation in wind remained the same as that in still air because of the large mass 
ratio. The results for the logarithmic rate of growth pa at an amplitude of O.lh are 
shown in figure 5(a-c) for the three cylinders with and without a splitter plate. The 
rate of growth pa is defined by the relation pa = /3+8,, where is the logarithmic 
rate of growth in wind, and hence it represents the aerodynamic contribution to the 
logarithmic rate of growth in wind. An estimate of pa using the forced-oscillation data 
is also given in each of the figures for a later discussion. 

FIQURE 3. Mean base-pressure coefficients versus reduced wind speed for forced-oscillating 
rectangular cylinders. (a) d / h  = 0.2, (b)  0.4, (c) 0.6: 0,  oscillation amplitude y, /h = 0.05; 0,O.l; 
---_ , value for fixed cylinder. 
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FIGURE 6. Samples of the power spectrum _ _  of fluctuating lift force on a cylinder with d/h = 0.4 
oscillating a t  y o / h  = 0.1. (a) = 3.9, U/U,,  = 0.59; ( b )  6.1, 0.93; (c) 7.0, 1.06; (d) 8.3, 1.26. 

It is seen from figure 5 that all three cylinders are vortex excited and excitation 
becomes more violent with increasing d /h .  One of the features of vortex excitation 
is that the oscillation is not always built up exponentially, i.e. when expressed by 
eAt sin2nf, t ,  A is not constant but amplitude dependent. Another feature to mention 
is beat modulation. These me seen in the signal traces in figure 4. Beat modulation 
was weakest for the cylinder with d / h  = 0.2 while it was most severe for the cylinder 
with d/h = 0.6, which made measurement of the rate of growth sometimes difficult. 

It is seen from figure 5 (a, b) that a weak instability was built up at low wind speeds 
well below Tcr, say, around T = 4.0, for cylinders with d/h = 0.2 and 0.4. An 
example of the signal trace for this low-speed flutter is given in figure 4(a). At high 
wind speeds no galloping was observed on any of the three cylinders. This is in 
agreement with a previous measurement (Nakamura & Tomoneri 1977) where it was 
shown that high-speed galloping can occur only for sections longer than the critical 
with d / h  = 0.67. 

Low-speed flutter is also seen to occur for cylinders with a splitter plate. No vortex 

FIGURE 5. The logarithmic rate of growth of oscillation versus reduced wind speed for rectangular 
cylinders with and without a splitter plate. (a) d / h  = 0.2, ( b )  0.4, (c) 0.6: 0, 0 ,  cylinder without 
a splitter plate; A, A, cylinder with a splitter plate: open symbols, direct measurements in 
free-oscillation experiment ; black symbols, equation (4) using forced-oscillation data. 
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F'I"I~URE 7. Magnitude of the frequency-response component of fluctuating lift-force coefficient of 
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RQURE 8. Phase angle of the frequency-response component of fluctuating lift-force coefficient 
of a rectangular cylinder. (a) d / h  = 0.2, ( b )  0.4, (c) 0.6: 0 ,  Yo/h  = 0.05; 0 , O . l .  
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FIQURE 9. Frequency-response component of fluctuating lift-force coefficient of a rectangular 
cylinder with a splitter plate. (a) magnitude, (b)  phase angle: 0, d / h  = 0.2; A, 0.4; 0, 0.6. 

excitation was observed on any of the cylinders with a splitter plate. Instead, a very 
regular instability was built up and continued up to high wind speeds, in agreement 
with Nakamura & Tomonari (1977). 

3.3. Fluctuating lift force on forced-oscillating cylinders 
Figure 6 shows samples of the power spectrum of the fluctuating lift force on the 
- cylinder with d / h  = 0.4. At wind speeds well away from the vortex-resonant speed 
Ucr (figure 6a and d), the Strouhal component is dominant over the frequency- 
response component with fy = 6.0 Hz. A t  wind speeds close to ucr (figure 6c) the 
Strouhal frequency is locked in to that of the imposed body frequency at a sufficiently 
large amplitude. 

The variations of the magnitude of the frequency-response component of the lift 
force for amplitudes of the imposed body oscillation of 0.0% (except for d / h  = 0.2) 
and O.lh with the reduced wind speed are shown in figure 7 (a-c), while those of the 
phase angle are shown in figure 8 (a-c). The values of the lift force on fixed cylinders 
are also included in figure 7 (a-c). 

It is seen that while vortex excitation is characterized by several nonlinear 
phenomena such as lock-in, the lift force still retains the resonance characteristics 
of a linear oscillator; namely, it exhibits a sharp peak in magnitude and a rapid 
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change in phase angle (amounting to about 180' for the cylinder with d / h  = 0.6) 
through vortex resonance. Lift amplification at vortex resonance is most significant 
for the cylinder with d / h  = 0.2. Figure 8 (a, b) indicates the onset of low-speed flutter 
for cylinders with d / h  = 0.2 and 0.4. The results of the lift-force measurement for 
cylinders with a splitter plate at an amplitude of the imposed oscillation of O.lh are 
shown in figure 9 (a, b). 

4. Discussion of the experimental results 
4.1. Three distinct JEOU, ranges 

The response of the flow past a bluff body to the imposed body oscillation consists 
of two main parts. One is the flow response linked directly to the acceleration of the 
body, and the other is the flow response to the continual variation of the angle of 
incidence of the body. The flow response to the body acceleration is dominant at low 
wind speeds, but it is less significant relative to the onset of flutter. As is shown in 
inequality (3), the onset of flutter is directly associated with the out-of-phase 
component of the lift force, however small in magnitude. 

The variation of the angle of incidence produces undulation of the wake, the 
wavelength of which is progressively shortened with decreasing wind speed. Wake 
undulation can manifest itself as motion-dependent vortices when the wind speed is 
low enough and the amplitude of the imposed oscillation is sufficiently large. 
However, it  should be noted that the influence of the imposed oscillation is present 
as wake undulation at any wind speed whether or not it manifests itself as 
motion-dependent vortices. 

When the frequency of the imposed oscillation approaches that of natural vortex 
shedding, a strong resonant interaction can occur between wake undulation and 
natural vortex shedding. As we have seen, the dynamic flow response due to resonance 
is restricted to a narrow range of the wind speed. On this basis three distinct flow 
ranges of interest can be identified: the low-speed flow range where fy @ f,, the range 
of vortex resonance where fy xf,, and the high-speed flow range where fy 4 f,. The 
distortion of the time-mean flow due to the imposed body oscillation should also be 
considered to gain a better understanding of the dynamic flow response. Since vortex 
excitation is a strongly nonlinear phenomenon, resonant interaction can vitally 
influence the time-mean flow. 

4.2. Critical side ratio of forced-oscillating rectangular cylinders 
In his study of the flow past oscillating rectangular cylinders Mizota (1984) measured 
the mean b m  pressure of a rectangular cylinder oscillating externally at vortex 
resonance over a wide range of d/A.  The results of his measurement are reproduced 
in figure 10 together with the present results. It can be seen that the base pressure 
of an oscillating rectangular cylinder shows a sharp minimum at d / h  = 0.4: namely, 
the side ratio d / h  = 0.4 is critical for rectangular cylinders oscillating at resonance 
just as the side ratio d /h=0 .67  is for fixed rectangular cylinders. Oscillating 
rectangular cylinders with d / h  below the critical value may be termed as short in this 
sense and those beyond the critical may be termed as long. It is also interesting that 
a rectangular cylinder with d / h  = 0.6 has no peak of -Cpb at resonance. According 
to Bearman & Obasaju (1982), a weak peak near resonance reappears for a square 
cylinder. 
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FIGURE 10. Mean base-pressure coeffiaient versus side ratio for fixed and osaillating rectangular 
cylinders. A, fixed; 0,  osoillating at y, /h = 0.1: 0, 8, Mizota (1984). 

4.3. Comparison between the results of free- and forced-oscillation experirnente 
If hae been assumed in the past (see, for example, Nakamura 1978) that the frequency 
and the rate of growth of slightly growing or decaying oscillation of a flexibly 
mounted body in the flow can be estimated with reasonable accuracy by using the 
frequency-response components of the aerodynamic forces and moment, and vice 
versa, "hi5 assumption is also examined in the present investigation. The rate of 
growth of osoillation is given in terms of the out-of-phase component of the lift force 
ara 

This is compared with the directly measured one in figure 5(a-c) .  It is seen that 
agreement is good over the wind-speed range tested for the three rectangular 
cylinders with and without a splitter plate. In  particular, agreement is fairly good 
even for vortex excitation where the rate of growth of oscillation is amplitude 
dependent. 

4.4. Low-speed $utter 
The mechanism of onset of low-speed flutter that occurred for cylinders with 
d / h  = 0.2 and 0.4 is unknown and merits further investigation. However, it  is 
interesting that the instability was also observed on cylinders with a splitter plate. 
A reasonable interpretation of this fact is that the flow downstream of a bluff body 
cannot adjust the upstream flow effectively when oscillation is fast enough. This is 
one of the most remarkable features of the oscillatory flow past a bluff body, and 
has been mentioned earlier for bluff cylinders with elongated cross-sections 
(Nakamura t Nakashima 1986). 
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FIGURE 1 1, Frequency-response component of fluctuating velocity in the wake of an oscillating 
rectangular cylinder. (a) magnitude, (a) ph- angle: 0, d / h  = 0.2; A, 0.4; 0, 0.6. 

4.5. Vortex reBownce 
As has already been mentioned, the frequency-response component of the lift force 
in the range of vortex resonance, although showing a number of nonlinear charac- 
teristics, still retains the important resonance characteristics of a linear oscillator ; 
namely, a sharp peak in magnitude and a rapid change in phase angle through vortex 
resonance. 

The resonance characteristics can be found not only in the lift force but also in 
various other flow parameters. A rapid change in the phase angle of the surface 



186 Y .  Nakamura and T .  Matsukawa 

FIQURE 12. Flow past a rectangular cylinder with d l h  = 0.4 oscillating at y, /h = 0.25 at the 
Reynolds number of 177. (a) = 6.25 ( =nc,), ( b )  6.68, (c) 6.94. The photographs correspond to 
the instant when the cylinder is at an extreme downward position. 
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FIGURE 13. Traces of fluctuating lift-force signal of a rectangular cylinder with d / h  = 0.2. 
(a) fixed cylinder, ( 6 )  cylinder oscillating at U,, with y, /h = 0.1. 

pressure of an oscillating circular cylinder has been demonstrated by Feng (1968) and 
Bearman & Currie (1979). Figure 11 (a ,  b) shows the results for the velocity fluctuation 
in the wake of the three rectangular cylinders oscillating at  an amplitude of O.lh. They 
suggest a strong resonant interaction between wake undulation and natural vortex 
shedding. 

In  particular, the phase angle of the fluctuating velocity changes by roughly 180' 
through vortex resonance for all the three rectangular cylinders. The photographs 
in figure 12 (a-c), taken in a water-tank experiment using a hydrogen-bubble method, 
show the flow past a rectangular cylinder with d/h = 0.4, where h = 1 cm, which is 
oscillating at  a flow speed of 2.5 cm s-l at an amplitude of 0.25h with frequencies of 
0.4 Hz (u = ucr = 6.25), 0.38 Hz (u = 6.58) and 0.36 Hz (v = 6.94). The Reynolds 
number was equal to 177. Vortex shedding was completely locked-in to the imposed 
body oscillation over the range of vortex resonance because of a large oscillation 
amplitude. The photographs, taken with an exposure time of & s, correspond to the 
instant when the cylinder was at an extreme downward position. It is seen that the 
phase angle of vortex shedding relative to the cylinder motion undergoes a rapid 
change through vortex resonance. Similar results of flow visualization were reported 
by Zdravkovich (1982) on an oscillating circular cylinder. 

One of the nonlinear effects on vortex excitation is found in the lift amplification 
at resonance. The rate of amplification is largest for the cylinder with d/h  = 0.2 where 
the magnitude of the lift force at an amplitude of O.1h of the imposed body oscillation 
is approximately 3.5 times that of a fixed cylinder (figure 7a) .  Two traces of the 

7 FLY 180 
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lift-force signal of the cylinder with d / h  = 0.2 are shown in figure 13 (a ,  b) ; one for 
the fixed cylinder and one for the cylinder oscillating at the vortex-resonant 
frequency. The signal in figure 13(a)  is characterized by large random modulation 
while that in figure 13 (b) indicates much reduction in this due to the imposed body 
oscillation. The maximum of the lift amplitude in figure 13 (b) is approximately twice 
that in figure 13 (a). This value of the lift amplification is considerably smaller than 
the value of 3.5 just mentioned. Obviously, the difference between the two is 
attributable to the reduction in amplitude modulation due to the imposed body 
oscillation. 

4.6. t sin t-type divergence 
Beat modulation can be observed in vortex excitation where the natural vortex- 
shedding frequency f, is close to but different from the body frequency fy. It is 
interesting to see what happens at the vortex-resonant speed where f, is exactly equal 
to fy. We have found that the oscillation exhibits a t sint-type divergence up to a 
relatively large amplitude beyond O.lh (see figure 4c and e ,  for example). If the body 
oscillation is given by y ( t )  = ct sin 2nfv t ,  where c is a constant, the lift force per unit 
span acting on the body is obtained by using the equation of motion, which neglects 
the system damping for simplicity, as 

L(t) = mg+m(2nfv)2y 

= 4nmcf, cos 2xfv t .  ( 5 )  

The lift force is thus a sinusoidal oscillation with a phase angle of 90". 

4.7. The onset of vortex excitation 
The foregoing analysis suggests that the phase angle of the lift force in the range of 
vortex resonance depends on the level in the low-speed flow range and the subsequent 
rapid change due to resonance. Vortex excitation can occur when the phase angle 
falls in the unstable region which is given by inequality (3 ) .  

For the cylinder with d / h  = 0.2, vortex excitation follows low-speed flutter 
continuously with increasing wind speed (figure 8a) .  In this case vortex excitation 
is extended on either side of the vortex-resonant speed Tcr. As d / h  is increased the 
phase angle of the lift force in the low-speed flow range is progressively decreased 
( d / h  = 0.4) and eventually falls in the stable region (d /h  = 0 .6 ) ;  the phase angle of 
the cylinder with d / h  = 0.6 is not constant at low speeds but shows an overshoot 
before entering into the range of vortex resonance. As a result, the oscillation of the 
cylinder with d / h  = 0.6 is stable in the lower half of the vortex-resonance range 
despite a, large phase-angle change. It is only in the upper half of the vortex-resonance 
range that excitation can occur. This trend is further amplified with increasing d/h .  
Bearman & Obasaju (1982) noted that vortex excitation of a square cylinder was 
limited to a narrow range at the upper end of vortex resonance (or a t  the upper end 
of lock-in in their terminology). 

4.8. Vortex excitation as coupled $utter 

It is now clear that vortex excitation is a flow-induced, self-excited oscillation of a 
bluff body, and hence it is categorized under the heading of aeroelastic flutter. Vortex 
excitation as flutter is characterized as follows. The system that we consider consists 
of two oscillatory subsystems; one is the body subsystem which has a natural 
frequency of fv, and the other is the fluid subsystem which has a natural frequency 
off,. The two subsystems are strongly coupled in such a way that the body subsystem 
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FIQTJRE 14. Block diagram showing the response of a bluff body in the presence of vortex 
shedding. 

is driven by the fluctuating lift force due to vortex shedding in addition to the direct 
motion-dependent lift force, while the fluid subsystem is in turn influenced 
significantly by the body motion. Thus, vortex excitation can be identified as coupled 
flutter occurring in a body-fluid system. Figure 14 is a block diagram illustrating the 
response of a bluff body in the presence of vortex shedding. The concept of vortex 
excitation as coupled flutter was proposed earlier by Nakamura & Mizota (1975) and 
Ito & Nakamura (1982). 

The basic instability mechanism of coupled flutter is that the cross-coupling force 
can do positive work in the presence of a phase difference between different degrees 
of freedom. In the classical example of bending-torsion flutter of an aircraft wing, 
the lift force due to torsion can amplify the bending motion of the wing if there is 
a favourable phase difference between bending and torsion. The same instability 
mechanism can be applied to other dynamical systems with many degrees of freedom. 
According to Stuart (1971), the boundary-layer instability can occur when the 
Reynolds stress becomes positive in the presence of a phase difference between the 
u- and v-velocity components. 

The essential feature of vortex excitation as coupled flutter is that the natural 
frequency of the fluid subsystem fv is proportional to the wind speed. The imposed 
body motion can set the fluid subsystem into resonance when the vortex-resonant 
speed is approached. The phase angle of the lift force due to vortex shedding relative 
to the body motion undergoes a rapid change through vortex resonance. This in turn 
produces a large out-of-phase component of the lift force so that the body motion 
is amplified. 

4.9. High-speed $ow range 

No drastic changes have been observed in the lift-force characteristics in the 
high-speed flow range where the natural vortex-shedding frequency fv is much higher 
than the body frequency/,. With increasing wind speed, the flow appears to gradually 
approach that past a fixed cylinder, although several other types of flutter such as 
galloping and torsional flutter characterize this particular flow range. The mechanism 
of onset of flutter observed on cylinders with a splitter plate is unknown and merits 
further investigation. 

7-2 
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4.10. Some remarks on the concept of lock-in 
In the present paper the term vortex resonance has been chosen in preference to 
lock-in to describe vortex excitation. As we have seen, the onset of vortex excitation 
is limited to a certain range of vortex resonance. Vortex resonance is a feature of a 
linear oscillator while lock-in is a typical nonlinear phenomenon. Therefore, lock-in 
is neither equivalent to vortex resonance nor to vortex excitation. 

5. Conclusions 
Vortex excitation of a bluff body is an aeroelastic flutter occurring in a fluid-body 

system where the two subsystems strongly interact with each other ; in short,, it is 
classified as coupled flutter. The most essential feature of vortex excitation as coupled 
flutter is that the fluid subsystem can be set into resonance by the body motion. A 
rapid phase-angle change of the lift force through vortex resonance produces a large 
out-of-phase force component which excites the motion of the body subsystem. 

Vortex excitation of a rectangular cylinder is strongly dependent on the side ratio. 
It appears that the critical change in the mean base pressure of an oscillating 
rectangular cylinder with increasing side ratio is closely correlated with the vortex- 
excitation characteristics. For short rectangular cylinders, vortex excitation follows 
low-speed flutter and is extended on either side of the vortex-resonant speed. For long 
rectangular cylinders, vortex excitation is limited to the upper half of the vortex- 
resonance range since low-speed oscillation is stable. Also, the lift amplification in 
vortex excitation of short rectangular cylinders is much larger than that of long 
rectangular cylinders. 

In the present paper attention has been confined to vortex excitation caused by 
the KarmBn vortex trail. For rectangular cylinders with d / h  greater than about 3.0 
and other elongated bluff cylinders, vortex excitation is not caused by the KBrmtin 
vortex trail but by the impinging-shear-layer instability where a single separated 
shear layer becomes unstable in the presence of a sharp trailing edge (Nakamura & 
Nakashima 1986). For a rectangular cylinder with d / h  = 2.0, close to the transition 
point, it has been shown (Nakamura & Mizota 1975) that vortex excitation is very 
much distorted and the lift-force characteristics are strongly amplitude dependent. 

We thank Dr T. Mizota, now of the Fukuoka Institute of Technology, and Messrs 
N. Fukamachi, K. Watanabe and K. Sugitani for assistance in conducting the 
experiments. 
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